[image:]

EXP-301 Lab Report
v.2.0
student@youremailaddress.com
OSID: XXXXX
[image:]

Copyright © 2023 Offsec Ltd. All rights reserved.
No part of this publication, in whole or in part, may be reproduced, copied, transferred or any other right reserved to its copyright owner, including photocopying and all other copying, any transfer or transmission using any network or other means of communication, any broadcast for distant learning, in any form or by any means such as any information storage, transmission or retrieval system, without prior written permission from Offsec.

Table of Contents

1.0 Offsec EXP-301 Lab Documentation	3
1.1 Objective	3
Note that copy-pasting code from the book modules into a script may result in unintended whitespace or newlines due to formatting.	3
1.2 Extra Miles	3
1.3 Requirements	4
2.0 Exercises	5
2.1 Summary Overview	5
2.2 Accessing and Manipulating Memory from WinDbg (Example Exercise)	5
2.3.1 Unassemble from Memory (Example)	6
2.3.2 Reading from Memory (Example)	7
13 Challenges	8
13.1 Challenge 1 (Example)	8

[bookmark: _gjdgxs]1.0 Offsec EXP-301 Lab Documentation
The following pages contains the lab exercises for the WUMED course and should be attempted only inside the Offsec hosted lab environment. Please note that most of the attacks described in the lab guide would be illegal if attempted on machines that you do not have explicit permission to test and attack. Since the Offsec lab environment is segregated from the Internet, it is safe to perform the attacks inside the lab. Offsec does not authorize you to perform these attacks outside its own hosted lab environment and disclaims all liability or responsibility for any such actions
[bookmark: _30j0zll]1.1 Objective
We recommend that you fully complete the exercises for each module prior to moving on to the next module. They will test your understanding of the material and build your confidence to move forward.
Depending on your existing skillset, it may take considerable time and effort to complete the exercises. Nevertheless, we encourage you to be persistent, especially with tougher exercises. Persistence is an essential trait to develop as part of the OffSec "Try Harder" mindset.
To aid in your studying the dedicated student vm contains the folder C:\proof_of_concepts. Inside this folder you will find exploit code for relevant exercises as marked by module, section, and exercise numbers. Only exercises that result in an updated exploit code have entries in the list.
We encourage you to attempt to solve the exercises on your own before you read the solutions, as this will greatly increase your learning.
[bookmark: _1fob9te]Note that copy-pasting code from the book modules into a script may result in unintended whitespace or newlines due to formatting.

[bookmark: _3znysh7]1.2 Extra Miles
Some modules include extra mile exercises, which are more difficult and time-consuming than regular exercises. These exercises are not required to learn the material, but they will you help develop extra skills and succeed on the exam. Also note that solutions to these extra miles are not given on your student vm.

[bookmark: _2et92p0]1.3 Requirements
The student will be required to fill out this lab report fully and to include the following sections:
· High-Level summary of assignment solutions.
· Methodology walkthrough and detailed outline of steps taken through analysis and all written code.
· Each finding with included screenshots, walkthrough, sample code or reference.
· Screenshots of the final working exploit against your target.

[bookmark: _tyjcwt]2.0 Exercises
[bookmark: _3dy6vkm]2.1 Summary Overview
A brief description of the assignments that were solved, including the overall exploitation / development steps.
E.g.: The supplied lab systems each had a vulnerable application installed, our goal was to disassemble or reverse engineer these applications. The following exercises were solved using Windbg and other relevant software namely IDA Pro. The following was achieved using Python and its libraries along with the C language and Assembly. Each section below contains the steps taken for each module.
[bookmark: _1t3h5sf]2.2 Accessing and Manipulating Memory from WinDbg (Example Exercise)
2.2.1 Open WinDbg and attach it to the Notepad process.

[image: Image]

2.2.1 Explore different WinDbg windows and get a feel for the layout.

I like the default look because it is clear to read....
[image: Image]

[bookmark: _4d34og8]2.3.1 Unassemble from Memory (Example)
2.3.1.1 Use the u command to unassemble the kernel32!GetCurrentThread Windows API.
0:003> u kernel32!GetCurrentThread
KERNEL32!GetCurrentThread:
770b5910 6afe push 0FFFFFFFEh
770b5912 58 pop eax
770b5913 c3 ret
770b5914 cc int 3
770b5915 cc int 3
770b5916 cc int 3
770b5917 cc int 3
770b5918 cc int 3

2.3.1.2 Can you explain the assembly code? What is the result of this function and how it is returned to the caller?

Short Descriptive answer here for each command...

[bookmark: _2s8eyo1]2.3.2 Reading from Memory (Example)
2.3.2.1 Use different versions of dd to dump data from memory and attempt to combine the display commands with poi.
0:000> db esp
00faf974 89 ab 1b 77 78 68 1f c1-50 ab 1b 77 50 ab 1b 77 ...wxh..P..wP..w
00faf984 00 00 00 00 78 f9 fa 00-00 00 00 00 ec f9 fa 00 x...........
00faf994 80 a3 18 77 90 ae fa b6-00 00 00 00 b4 f9 fa 00 ...w............
00faf9a4 a4 de e2 76 00 00 00 00-80 de e2 76 8a ae aa ca ...v.......v....
00faf9b4 fc f9 fa 00 be 00 15 77-00 00 00 00 24 68 1f c1 w....$h..
00faf9c4 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00faf9d4 00 00 00 00 00 00 00 00-00 00 00 00 24 68 1f c1 $h..
00faf9e4 c0 f9 fa 00 00 00 00 00-04 fa fa 00 80 a3 18 77 w

[bookmark: _17dp8vu]13 Challenges
Take the time to work on these challenges and develop a methodology for enumeration, reverse engineering, and exploit development.
[bookmark: _3rdcrjn]13.1 Challenge 1 (Example)
Challenge 1 makes use of the Intelligent Management Center (iMC) application portfolio by HP Enterprise. It contains a multitude of applications listening on more than 15 different network ports, offering a wide attack surface.
Several hundred vulnerabilities have been found in the application over the last 5 years. In this challenge, the TFTP server that comes packaged with iMC is the target.
These are the steps followed below:
· Running an NMAP scan against the target showed the port closed
#➤ [wumed] sudo nmap -sC -sV -sU -T2 -p 69 192.168.70.40
Starting Nmap 7.92 (https://nmap.org) at 2022-10-09 07:32 EDT
Nmap scan report for 192.168.70.40
Host is up (0.17s latency).
PORT STATE SERVICE VERSION
69/udp closed tufts
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 1.81 seconds

· Unable to see the port from our vm we rdesktop into the system:
sudo rdesktop -u admin -p lab -g 90% 192.168.78.100

· and attach the process running the IMC service

· Once attached we able to start reversing the application
[image: Image]

[image: Image]

 | Page
image2.png
AR Akiaste

Attach to Process

3448
708
424

3024

1420

2840

1452

1468

4528

4604

4612

conhost .exe

Javaw exe

ava. exe

Javaw exe

Javaw . exe

Svchost .exe

cnd.exe

conhost .exe

dbnan. exe

ing. exe

conhost .exe

4680 incsysdn exe
Session: 0 User

4688 conhost.exe

5276 tftpserver exs
Session: 0 User

5828 incnetresdn.exe

5836 incl2topodn exe

5844 incjobngrdn exe

<

NT AUTHORITY\SYSTEN

NT AUTHORITY\SYSTEN

Sot

@ System order Osyo

Process ID:

image3.png

image6.png
Wind
Wind
Wind
Wind
Wind
Wind
Wind

Wind
Wind
Wind
Wind
Wind
Wind
Wind
Wind
Wind
Wind

Wind
Wind

mponen

Proc 000:364 Thrd 001:122¢

ASM OVR CAPS NUM

image5.png
& Pid 1712 - WinDbg:10.0.15063.468 X86

File Edit

KERNEL
ntdll!
ntdll!

View

Debug Window Help

AR

Command
Watch

Locals

Registers

Memory

CallStack
Disassembly

Scratch Pad

Processes and Threads

Command Browser

A1
A2
A3
A4
A5
A6
A7
A8
A9

CtrlsN.

HEOE

me nums Source

image1.png
Offset: [@5scopeip

ntdl1 IRt IpBreaki thotatusInstruction

773d1414 oo int 3
77341415 20400 ret 1
773d1418 4242400000000 lea esp. [esp.
773d141f 90 nop
ntdlliDbgliserBreakFoint

773d1420 oo int 3
773d1421 90 nop

77341422 3 ret

773d1423 8da42400000000 lea esp. [esp,
773d1422 8d9b00000000 lea b [ebx]
ntdl] | DbgBreakPaint

773d1431 3 Tot.

77341432 oo int 3
77341433 oo int 3
77341434 oo int 3
77341435 oo int 3
773d1436 oo int 3
77341437 oo int 3
77341438 oo int 3
77341439 oo int 3
773d143a oo int 3
Command

\Windows\STSTEN32\Nt LuShared d11
\Vindows\SYSTEH32\eryptdll dil
\Windows\SYSTEN32\ntdsapi. dll
\Windows\SYSTEN32\DSPARSE . DLL
\Windows\systen32\schannel DLL
\Windows\SYSTEN32\nskeyprotest .dll
\Vindows\SYSTEN3IZ\ncrypt d11
\Windows\SYSTEN32\NTASNI .d11
\Windows\systen32\neryptsslp dll
\Progran Files\Comnon Files\Syste\Ole DENSQLOLEDE.RLL
\Windons\SYSTEN3I2\DNSAPT . d11
Windows\Systen32\NSI.dll
\Windows\Systen32\fupuclnt A1l
Modload: 60320000 60326000 C:\Vindovs\System32\rasadhlp dll
Modload: 64700000 64718000 C:\Program Files\Commom Files\System\adonsadrhlS.dll
l(143c.828): Break instruction esception — code 80000003 (first chance)

0322000 ebx=00000000 ecz=77409be0 edx=77409bo0 esi=77409bcl edi=77409bc0

ModLoad: 73650000 736ba000
Modload: 73780000 73791000
Modload: 65540000 6552000
Modload: 62£20000 6efen0nl
Modload: 73320000 73388000
Modload: 655£0000 65600000
ModLoad: 73960000 73980000
Modload: 73930000 73952000
Modload: 65630000 65645000
Modload: 01220000 01223000
Modload: 73540000 73544000
Modload: 76bd0000 765d7000
Modload: 64170000 6d1bs000

000n0000N000000

=ip=773d1430 esp=03defi54 ebp=03deff80 iopl=0 nv up ei pl zr na pe nc
cs=001b £5=0023 ds=0023 e==0023 fs=003b gs=0000 ©£1=00000246
ntdllIDbgBreakPoint

773d1430 oo int 3

[6:0335

image4.png
OffSec

