
Exploit Adobe Flash Under the
Latest Mitigation

Yuki Chen (@guhe120)

Qihoo 360Vulcan Team

Agenda

• Who am I

• Background

• Flash Exploit Mitigations

• Conclusion

About 360Vulcan Team

 Security Researchers

 Pwn2Own 2015 Internet
Explorer 11

 Pwn2Own 2016 Google
Chrome

 Pwn2Own 2016 Adobe
Flash in Microsoft Edge

 100+ CVE from Microsoft

 Syscan/BlackHat/HITCON

/Syscan360/44Con/POC

Agenda

• Who am I

• Background

• Flash Exploit Mitigations

• Conclusion

Background

• Flash player is one of the hottest target in
Apt/Target attacks these years

– Remote

– Multiple browsers

– Many bugs

– Easy to exploit

Hacking Team Leak – The Trigger?

• 3 0day exploits, everyone can use it easily

• Sophisticated exploit template demonstrated

• Remaindered us again that how easy it was to
exploit a flash bug

• Adobe decided to do something to fight
against such in-the-wild 0day exploits

Adobe is Serious, So are We

• They added some really good mitigations

• We also researched these mitigations carefully
– For the pwn2own contest

– Made several flash exploits under the mitigations

– 2 used in pwn2own 2016
• One for Microsoft Edge Browser

• One for Google Chrome sandbox bypass

• Some share about our research today

Agenda

• Who am I

• Background

• Flash Exploit Mitigations

• Conclusion

July
2015

Dec
2015

Vector Length
Cookie Check

2015.07

2015.12

TimeLine of Import Flash Exploit Mitigation

ByteArray Length
Cookie Check

Isolated
Heap
2015.12

Mar
2016

System
Heap
2016.03

June
2016

2016.06

Memory Protector

Length Cookie

• First introduced in July 2015

• Add extra checks when using some array-like
objects

– Vector

– ByteArray

– BitmapData

The Array-Type Object and Exploits

• Good friends of Exploit Writer

• JS

– TypedArray, NativeArray, Array, String

• Java

– Java Primitive Array

• Actionscript

– Vector, ByteArray, BitmapData, String

Exploit Abusing Vector Before
the Mitigation

Some Vulnerability

Use After Free
Buffer Overflow

…

Vector Object

length

overwrite

Get arbitrary
memory
read/write
ability

Code
Execution

trig

Length Cookie Mitigation

• Stored a XORed cookie of important fields in the
array-like object
– Vector: length

– ByteArray: length, capacity, m_array

– BitmapData: length, data

• Check the cookie when use the object

• The XOR key is initialized randomly when module is
loaded

Length Cookie Mitigation - Example

var v:Vector.<uint> = new Vector.<uint>(0x100);

0:025> dd 09ecd020

09ecd020 b71a6a6f 1ca16666 1ca17777 00000000
09ecd030 00000000 00000000 00000000 00000000
09ecd040 00000000 00000000 00000000 00000000

0a6a4e19 mov eax, ecx
0a6a4e1b xor edx, b71a6b6f

b71a6b6f ^ b71a6a6f = 0x100

XORed Length

Key

Length Cookie Mitigation - Efficiency

• Very powerful mitigation, significantly raises
the difficulty of exploiting flash bugs

• Some other choices (but not as good as)

– JS array in browser

– Leak the cookie first, then overwrite

– Other not protected objects

Mitigation in Heap Management

• Isolated Heap

• System Heap

An Overview of the Flash Heap
(Before Dec 2015)

var ba:ByteArray = new ByteArray();
ba.length = 0x1000;

ByteArrayObject

ByteArray->
m_buffer

ByteArray->
m_buffer->m_array

GC Heap

Managed Memory
(GC Alloc)

Unmanaged Memory
(FxiedMalloc)

The Problem of the Flash Heap

• All memory blocks are allocated with the same
underline GC Heap (No Isolation)
– GC/No-GC objects are allocated together

– Object (class object, array, …) and Data (buffer, …)
are allocated together

• No front-end randomization in both allocators
(Predictable)

• Heap meta data (header, free list,…) lack of
protection (Vulnerable)

Example: CVE-2015-5122

• The hacking team 0day

• Use after free in Display Object

– In the GC Heap

CVE-2015-5122 - Exploit

• Abuse vector.<uint>

• Free the problematic object and the whole
page (GC Heap)

• Allocate vector.<uint> in the place of freed
page (No GC Heap)

• Overwrite vector.length

The problem: Mix different objects in same heap
makes exploit easy

Display
Objects
(0x390 bytes)

0x1000 (one page) GC Memory

Target
Display
Object

Other
Display
Object

Other
Display
Object

Vector.<uint>
(0x190 bytes)

0x1000 (one page) Non GC Memory (FixedMalloc)

Target
Vector

Free the whole page
and allocate vector.<uint>
In the same place

Overwrite vector.length

Other
Vector

Other
Vector

Other
Vector

Other
Vector

Isolated Heap

• Introduced in Dec 2015 CPU

• Aimed to address the biggest problem of flash
memory management:

– The problem that all objects share the same low-
level heap

Isolated Heap Overview

Managed Memory
(GC Alloc)

Unmanaged Memory
(FixedMalloc)

GC Heap1 GC Heap2

GC Heap N

FixedMalloc
Heap1

FixedMalloc
Heap2

FixedMalloc
Heap N

Isolated Heap - Highlight

• GC allocation and non-GC allocations
(FixedMalloc) are now separated

• Different objects inside GC/Non GC allocations
are also separated
– GC/FixedMalloc contains several different heaps

for different purpose (extensible)

– e.g. In FixedMalloc, data and objects are
separated

var ba:ByteArray = new ByteArray();
ba.length = 0x1000;

ByteArrayObject

FixedMalloc
Heap

For Objects

ByteArray->
m_buffer

ByteArray->
m_buffer->m_array

Unmanaged Memory
(FixedMalloc)

FixedMalloc
Heap

For Data

GC Heap
For AS3
Script

objects

… …

Managed
Memory
(GC)

Isolated Heap - Efficiency

• The flash isolated heap mitigation is actually a
very powerful mitigation

– The data and objects are separated

– High risk object and other objects are separated

• Consider the example of CVE-2015-5122

Display
Objects
(0x390 bytes)

0x1000 (one page) GC Memory

Target
Display
Object

Other
Display
Object

Other
Display
Object

Free the whole page
and allocate vector.<uint>
In the same place

The reuse does not work, because now display object and
Vector.<unit> are in different heaps

CVE-2015-5122 Exploit under
Isolated Heap

Isolated Heap – Enough?

• The number of separated heaps are still too
little, especially in GC memory

• Objects are separated by type, not by size

– Object with different size can still be allocated
together

– Partially solved by the system heap mitigation

Isolated Heap – Enough?

• Travel between different isolated heaps

– By overwriting the allocator in the block header

System Heap

• Introduced in Mar 2016 CPU

• Aimed to address the problem that:
– The flash heap allocation is too predictable

– The flash heap block metadata has little
protection

• Only works for MMGC heap (unmanaged
memory)

System Heap

• Released 1 week before Pwn2Own 2016

– Delayed patch

System Heap - Implementation

• The concept is simple:

– Use system heap (HeapAlloc) directly in MMGC
(unmanaged memory) allocation

System Heap - Efficiency

• Front end randomization in windows 8+

– Gives more random memory layout

• The system heap metadata is protected

– The old heap metadata (block header, free list
entry) could be easily attacked

Before system heap: allocate 10 objects,

0x38 bytes each

rax=000002bef2db8388
rax=000002bef2db83c0
rax=000002bef2db83f8
rax=000002bef2db8430
rax=000002bef2db8468
rax=000002bef2db84a0
rax=000002bef2db84d8
rax=000002bef2db8510
rax=000002bef2db8548
rax=000002bef2db8580

After system heap: allocate 10 objects,

0x38 bytes each

rax=000001f559513710
rax=000001f559513190
rax=000001f5595133d0
rax=000001f559513610
rax=000001f559513150
rax=000001f5595132d0
rax=000001f559513390
rax=000001f559513410
rax=000001f559513550
rax=000001f559513450

System Heap - Problem

• The biggest problem is that it is only used for
mmgc allocation
– The GC memory still uses flash’s heap management

• Still predictable
• Attack heap metadata still possible
• Memory reuse is easy

• Also some objects/buffer in mmgc still use the
old allocation
– Vector, ByteArray
– We will demonstrate an attack on such object later

Use After Free Mitigation
- Memory Protector

• Used first by Microsoft IE/Edge to mitigate use
after free exploits

– Aka. Deferred Free

– Proven very effective

• Why memory protector in flash?

– Many exploitable (exploited) vulnerabilities in
flash player are use after free vulnerabilities

Memory Protector

• When an element is freed
– It’s memory is not freed immediately

– Instead it is added to a deferred free list

– The list will be iterated later (when newly freed
memory size > threshold)

– Memory block which meets the free criteria will be
freed

• The free criteria
– There must not be any reference to the memory block

on the stack

Flash Memory Protector

A

B Deferred Free List

Free

Free

A B …

Recycle Stage

Free Stage

Deferred Free List

A
(address:

X)

B
(Address:

Y)
…

Stack

X
check

Value X is found on the
stack, A’s memory can
not be freed
Value Y is not found on
The stack, B’s memory will
Be freed

Memory Protector Mitigation

Flash Memory Protector – Effective?

• It would be OK if adobe just make a full copy
of Microsoft's implementation directly

• But they made some changes in their own
implementation

Problem of Flash Memory Protector

• Implementation contains trade-off

• Can help attacker to bypass ASLR

• Security Vulnerability

Implementation contains trade-off

.text:10724BDD add edi, 10h

.text:10724BE0 cmp edi, [esi]

.text:10724BE2 jb short

The stack scan checks every 4 pointer (not every pointer)
Why adobe implements it like this is mystery

0xAABBCCDD

Stack

Memory
Protector

Free memory 0xAABBCCDD

Scan the Stack for reference

0x10000008

0x1000000C

0x10000004

0x10000000

0xAABBCCDD reference at stack address 0x10000008, which
is not 4-pointers aligned.
So the scan process will not see this reference, the memory
will still be freed.
The use after free vulnerability will still be triggered.

ASLR Bypass using Memory Protector

• The stack scan process can not distinguish
between pointer and data

• We can guess the address of a memory block:
– Put the guess address (e.g. 0xaabbccdd) on stack

– Free the memory block and trig reclaim

– Check whether the memory block is actually freed,
if it is not freed, then 0xaabbccdd should be the
address of this block

0xAABBCCDD

Stack

Address
to
Guess

Memory
Block

Free

Is memory block
actually freed?

Guess success.
The memory block address
Is 0xAABBCCDD

NO

YES

Guess Failed.
Try to guess
another address.

ASLR Bypass - Demo

Security Vulnerability

• Memory protector uses a fixed size (0x400
items) array to store memory blocks

if (this->dwCount >= 0x400 || this->totalSize >= 0x186a0) {
// Reclaim memory blocks in this->pBlocks

}

this->pBlocks[this->dwCount ++] = newBlock;

Figure out where the bug is, you have 5 seconds

Security Vulnerability

• Consider the following situation

if (this->dwCount >= 0x400 || this->totalSize >= 0x186a0) {
// Reclaim memory blocks in this->pBlocks
// if all 0x400 blocks in the array has reference
on the stack, then non of them will be reclaimed

}

this->pBlocks[this->dwCount ++] = newBlock; // overflow!

A buffer overflow in the exploit mitigation?

Exploit the Exploit Mitigation (Step 1)

• Heap Overflow -> Use After Free

NetworkConfiguration
Object

Memory
Block
Array

overflow

Address
Of
Memory

readLimit
Property

read/write

By overwriting the memory address in the memory protector array,
we can make memory protector to free arbitrary address we want.

B
ByteArray->
buffer.m_array

overwrite

Exploit the Exploit Mitigation (Step 2)

• Use After Free -> Memory Overlapping

• ByteArray->buffer.m_array is allocated with
FixedMalloc (not system heap)

Free Block 1

Next Next

Free Block 2

Next

…

Free List of Fixed Block in FixedMalloc

overwrite the free
list entry
to point to
anywhere
you want

Exploit the Exploit Mitigation (Step 3)

• Allocate a new ByteArray whose length is the
same with the free block

• You get a ByteArray which can read/write the
arbitrary address pointed by the fake free list
entry

Exploit the Exploit Mitigation (Demo)

So I exploited a bug in
the flash exploit mitigation,
bypassed all of
the other mitigations,
and got RCE
in your browser.

Adobe’s Fix on this Bug

• Reported to adobe at 17th June

• Fixed in July security update as CVE-2016-4249

• The End of the Story?

– No

if (this->dwCount >= 0x400 || this->totalSize >= 0x186a0) {
// Reclaim memory blocks in this->pBlocks

}

If (this->dwCount >= 0x400) {
// Just free the memory
return;

}

this->pBlocks[this->dwCount ++] = newBlock;

Just free the memory…
Free the memory…
The memory…
Memory …

Just free the memory directly?
But you are memory protector right ?

Adobe’s Fix on this Bug

• This fix just makes memory protector useless
in some condition

• We only need to make the blocks array full
while all of the blocks in the array have
references on the stack

• After that, any memory block will be directly
freed just like there is no memory protector at
all

Future of Flash Exploits Under the
latest Mitigation

• The percentage of useable bugs decreased

– Especially for 64-bits target

• But high quality bugs can still survive

– Type Confusion

– Out-of-bounds array R/W

CVE-2016-1015

• The exploit we demonstrated in pwn2own
2016

• Type confusion

– A NetConnection object could be confused to any
other object

– Could be easily converted to out-of-bounds r/w,
uaf, …

CVE-2016-1016 + CVE-2016-1017

• Another exploit we used in pwn2own 2016

• Combination of 2 use after free bugs

– Info Leak + Arbitrary Write

• Less affected by the heap mitigations

– Because they are in GC Memory

CVE-2016-4117

• 0day exploited in the wild

• Type confusion bug

– Type confuse a script object to another type

– Exploit process:

• Confuse a sub-class of ByteArray to another class

• Leak the XOR key

• Make a fake ByteArray with length 0xffffffff with the
leaked key

• Get arbitrary memory R/W

Agenda

• Who am I

• Background

• Flash Exploit Mitigations

• Conclusion

Conclusion

• Adobe added many good mitigations into flash
player since July 2015
– Length cookie

– Isolated heap

– System heap

– Memory protector

• Although neither of them is perfect, these
mitigations really raised the difficulty of writing a
working flash exploit in the latest OS

Join Us

• Security Researcher

– Brower/Kernel/Virtualization

– Vulnerability/Exploiting Technique

• Full Time/Internship/Remote

